Remote Sensing of Lake Tahoe's Near Shore Environment

Shohei Watanabe¹, Erin L. Hestir^{1,3}, Sean D. Hogan¹, Geoffrey Schladow², George Scheer¹ and Susan L. Ustin¹

¹ Center for Spatial Technologies and Remote Sensing, Department of Land, Air and Water Resources, University of California, Davis ² Tahoe Environmental Research Center, University of California, Davis ³ Environmental Earth Observation Program, Division of Land and Water, Commonwealth Scientific and Industrial Research Organization, Australia

Remote Sensing Applications

The Sacramento San Joqauin River Delta

HyMap Airborne Imaging Spectrometer 3m pixel resolution

Remote Sensing Applications

 Species detection and mapping of submerged aquatic vegetation

Submerged aquatic plants

Need of mapping at Lake Tahoe

- Invasive species in near shore area
 - Asian Clams
 - Macrophytes (aquatic plants)

Corbicula fluminea found underwater at Marla Bay, Lake Tahoe 2009

Objectives

- Mapping near shore substrate
 - Asian clams
 - Aquatic plants
- Water quality monitoring
 - Phytoplankton
 - Organic carbon
 - Suspended solids

Methods

- Remote sensing data
 - Multispectral satellite image (WorldView-2)
 Hyperspectral airborne image (SpecTIR)
- In situ measurements
 - Above-surface spectrometer measurements
 Underwater spectrometer measurements
- Laboratory optical measurements

 Absorption & Scattering coefficient of water
- Radiative transfer modeling
 - Model remote sensing reflectance from above measurements

In situ Spectrometer

In situ Spectrometer

SpecTIR

- High spatial resolution
 2 m
 - Hyperspectral – 126 bands in visible-NIR

SpecTIR

• 15 Flight lines in south of the lake

SpecTIR

WorldView-2

- High spatial resolution
 - 2.5 m
- Multispectral
 - 8 bands in visible NIR

WorldView-2

Radiative Transfer Model

Hydrolight modeling of Remote sensing reflectance near shore environement

In situ Spectrometer (Underwater)

In situ Spectrometer (Underwater)

Laboratory Spectrophotometry

Upcoming Analyses

Comparisons of spectra obtained by several different methods

Develop substrate classification methods, and apply them on the images.

Develop models determine water constituent concentrations

Thanks

Funding provided in part by

Department of LAND, AIR AND WATER RESOURCES University of California, Davis Climate Change . Sustainable Agriculture Environmental Quality . Landscape Processes

Boat Drivers and Scientific Divers at TERC

Dr. Vincent and his colleagues at Laval University, Canada