Biodiversity and composition of bird and small mammal

 communities after the Angora firePatricia N. Manley, USFS Pacific Southwest Research Station Angela M. White, USFS Pacific Southwest Research Station
Gina L. Tarbill, USFS Pacific Southwest Research Station
T. Will Richardson, Tahoe Institute for Natural Science

Angora Fire

June 24-July 10, 2007

- Burned 1,255 hectares
- Burn severity varied due to wind, slope, fuel load, and firefighting efforts
- On Wildland-Urban Interface
- Post-fire harvest largely limited to WUI

Fire is the dominant source of natural disturbance

- Modifies forest structure and composition
- Alters arthropod populations
- Creates snags and woody debris

Photo credit: USDA Forest Service

- Creates, alters, and destroys wildlife habitat

Questions

- How do bird and small mammal communities differ by burn severity?
- How does time since fire, urbanization, and postfire harvest affect this response?

How do species richness and abundance of 36 avian and 11 mammalian species differ?

$$
200820092010
$$

\qquad
\qquad

Species-level response: burn severity

Species-level response: burn severity

Species-level response: time since fire

- Six species of birds and eight species of small mammals increased in abundance after first year
- Several species had highest abundance in second year
- No significant difference between burned and unburned by year three

- Douglas Squirrel

Golden-mantled Ground Squirrel

Effects of post fire harvest

- Harvest was limited
- No species had lower abundance in treated sites
- Five bird and one small mammal species had higher abundance in treated sites
- None were fire-specialists

Effects of development

- Several fire-adapted species had slower "recovery" in urban sites
- Four species "recovered" more quickly in urban areas

Conclusions- species level

- Majority of birds and small mammals responded positively or neutrally to increasing burn severity
- Fire specialists did not exhibit a decreasing year effect
- Most species increased over time
- Species that rely on live trees for foraging or nesting sites likely to decline with increasing burn severity

Community-level response

Birds

\square Total abundance \quad Species richness

\square Total abundance \quad Species richness

Small mammals

Conclusions: community level

- Species richness of birds was highest in sites that burned at high severity
- Species richness of small mammals was highest in low burned sites
- Richness of small mammals equal in year three for high and unburned

Conclusions

- Harvest in urban areas may have less of an impact on firedependent species
- Burned urban and wildland sites do not support similar communities
Severely burned sites provide habitat for many species
Burned areas support a wide variety of birds and small mammals especially at larger time and spatial scales

Acknowledgements

- Southern Nevada Public Lands Management Act
- California Tahoe Conservancy
- Tahoe Institute for Natural Science
- Lake Tahoe Basin Management Unit, USFS
- Region 5 Ecology Group, USFS
- University of Montana

Photo credits: Naturepicsonline

Field surveys

