Physical Exchange Processes in Emerald Bay Lake Tahoe, CA-NV

Paul Stumpner, Alex Forrest, and Geoff Schladow UCD Tahoe Environmental Research Center (TERC) - Incline Village, NV UCD Environmental Dynamics Laboratory – Davis, CA May 23, 2012

Emerald Bay

- Small Embayment ~ 0.097 km³
- Lake Tahoe ~ 150 km³
- Sill formed by glacial moraine separates EB and Lake Tahoe
- Water Characteristics

 (particulates, dissolved matter, etc.) different than Lake Tahoe

Study Motivation

- Pilot Study rubber bottom barriers to control Corbicula Fluminea (Asian Clams)*
- Dissolved Oxygen (DO) did not reach near anoxic condition under barriers*
 - 20 80 % saturation for study duration
- Investigate Processes behind Observations
 - Field Experiment May September 2011
 - Investigations Ongoing

*Gamble, Allison. Asian Clam Populations in Emerald Bay: Initial Ecology Results and Future Investigations

Emerald Bay Field Experiment

RONMENTAL

RESEARCH CENTER

Emerald Bay Field Experiment

Underwater Photo: Courtesy of Brant Allen

Hypotheses for Observed DO

- Exchange of water increases DO under barrier
 Flow directly under mat
 Flow initiates substrate (hyporheic) flow
- 2. Wave Pumping due to High Boat Traffic or Daily Winds
- 3. Eagle Creek run-off displaces water at sill

Exchange Flow Mechanisms

Horizontal Temperature Gradients

- Differential heating and cooling
- Surface layer stirring by weak-moderate winds

Exchange Flow Mechanisms

Strong Winds

- Initially produces surface seiching
- Cooler water upwells outside of EB

Field Observations

UCDAVIS TAHOE ENVIRONMENTAL RESEARCH CENTER

Exchange Mechanism – Temperature Gradients

Velocity [m/s]

UCDAVIS TAHOE ENVIRONMENTAL RESEARCH CENTER

Exchange Mechanism - Upwelling

TAHOE ENVIRONMENTAL RESEARCH CENTER

DO Supply from Upwelling Events

TAHOE ENVIRONMENTAL RESEARCH CENTER

Conclusions

Peaks in DO - Upwelling events initiate exchange flow and supply DO from Lake Tahoe to 80-85% saturation

Diurnal DO Fluctuations - Daily boat traffic, winds, and exchange flows all contribute

Flow pathways either directly under mat or through substrate – Still under investigation!

Acknowledgements

Funding Agencies

 California State Parks, Tahoe Region Planning Agency, Tahoe Resource Conservation District, and the California Tahoe Conservancy

TERC Staff and UC Davis Students Brant Allen, Katie Webb, Allison Gamble, Raph Townsend, Kristen Fauria, Kristin Reardon, and Daniel Nover

