A Method to Estimate the Fine Sediment Load Reductions Associated with SEZ Restoration

SNPLMA Rounds 8-11 CA State Parks CTC

Brian Spear, MS Tahoe Science Consortium May 24, 2012

May 24, 2012

Liquid Innovations

Why does Tahoe need load reduction estimates?

- FSP primary pollutant of concern to Lake Tahoe.
- Reduction of FSP loads into Lake Tahoe a priority.

Scale = 1:9000

Method to estimate the average annual pollutant load reduction as a result of SEZ restoration actions: Stream Load Reduction Tool (SLRT)

Objectives

- Develop a reliable, repeatable and cost-effective tool
- Applicable to range of SEZ scales
- Incorporates best available data and hypotheses of system function
- Improvable and adaptable over time
- Consistent with accepted stormwater tools and programs within Lake Tahoe Basin

SLRT Guiding Concepts

SEZ Restoration Load Reductions Achieved by:

- a. Reduce stream bank erosion (source control)
- b. Increase floodplain deposition (treatment)

<u>Users:</u> Practitioners, Engineers, Planners <u>Pollutant:</u> FSP, potential expansion later. <u>Output:</u> Average Annual FSP Load Reduction at downstream boundary of SEZ.

EQ1.

AA FSP Load Reduction (MT/yr) = AA OUT Pre Restoration (MT/yr) – AA OUT Post Restoration (MT/yr)

7

ecosystem science + design

Example Calculation: Trout Creek Restoration Project

Load IN= FSP Load Rating Curve x Frequency

ecosystem science + design

Load IN= FSP Load Rating Curve x Frequency

Retention = Load Delivered to Floodplain x Percent Retained

Post Q_{cc} = 70 cfs Total Load Delivered to FP = 837 MT

Pre Q_{cc} = 200 cfs Total Load Delivered to FP = 79 MT

Retention = Load Delivered x Percent Retained

Retention = Load Delivered x Percent Retained

ecosystem science + design

Retention = Load Delivered x Percent Retained

ecosystem science + design

14

Trout Creek Example Summary: Load IN = 104 MT/yr

> Pre restoration SFP = 2.6 MT/yr

> Post restoration SFP = 20 MT/yr

PRE AA OUT= POST AA OUT= FSP load reduction from FP retention only = 101.5 MT/yr 84 MT/yr 17.5 MT/yr

- **SCE** collaboration with A. Simon and V. Mahecek to incorporate BSTEM modeling
- **SFP** How can retention coefficient be adjusted for floodplain characteristics (inundation depth, complexity, vegetation, etc)
- Apply SLRT to urban SEZ project
- Final Technical Report expected Fall 2013
 - Data collection summary
 - SLRT Technical Document
 - SLRT Guidance Document

QUESTIONS/COMMENTS

QIN. Complete estimates and then compare to measured datasets. How well can we predict annual flow volumes?

- FSP(Q). Compile available data and create best estimations. Document assumptions and provide guidance on how continue in future. Great to get some USGS data.
- $\begin{array}{l} R_{fsp}. \mbox{ Need few more channel/floodplain cross-section morphologies.} \\ \mbox{ Conduct analysis of FP area/depth and veg characteristics} \\ \mbox{ Compare site characteristics to } R_{fsp} \mbox{ data obtained.} \\ \mbox{ Is } R_{fsp} \mbox{ to } Q:Qcc \mbox{ correct or should it } be \ R_{fsp} \mbox{ to } FPz? \end{array}$
- SCE. Coordinate with BSTEM researchers. Develop simple method and compare results to higher resolution results from Trout and UTR reach.

t_i (days)

Coordinate with BSTEM researchers. Develop simple method and compare results to higher resolution results from Trout and UTR reach.

Critical data gap is the FSP mass per unit of channel sediment generated.

19

SLRT calibration using existing datasets

			I
Variable	Site	Duration	Calibration approach
IN _{fsp}	Trout at Pioneer Trail	WY10/ WY11	Continuous sediment loading data compared to predicted load for spring snow melt events.
IN _{fsp}	Pasadena and Incline urban catchments	WY12	Continuous sediment loading data compared to predicted load for events where reliable data is available.
SCE _{fsp}	Trout from Pioneer Trail to Cold Creek	2002-2006	Compare SLRT simple approach using BSTEM for reduced time series to detailed BSTEM model created for Trout by Simon and Mahacek in late 2009 (SNPLMA). In addition, compare to repeated cross-section dataset to quantify mass of sediment eroded from reach from monitoring points.
SCE _{fsp}	Bristlecone	1998-2006	Compare SLRT simple approach using BSTEM to results using more rigorous input parameters to evaluate annual deviations and signal in overall OUT_{fsp} load.
OUT _{fsp}	Trout	WY11/WY12 (?)	Compare SLRT estimate using event hydrology to measured continuous sediment loading data at Reach 3 boundary.

FSP Data Calculations

							Post CC (cfs) 70	Pre CC (cfs) 200	ChV post (acft) 5400	ChV pre (acft) 500		
		ti			Post	Pre	Post	Pre	Post	Pre	Post	Pre
Discharge (cfs)	midpoint	count	FSP(Q) (MT/d)	IN fsp(MT)	DFPfsp (MT)	DFPfsp (MT)	Q/Qcc	Q/Qcc	Rfsp	Rfsp	SFPfsp	SFPfsp
0 To 10	5	2772	0.01	21.77					·		·	
10 To 20	15	1843	0.06	110.50				m3ps				
20 To 30	25	747	0.15	115.23				5.67				
30 To 40	35	372	0.29	106.94				2.83				
40 To 50	45	229	0.46	104.79								
50 To 60	55	125	0.66	82.92								
60 To 70	65	90	0.90	81.32								
70 To 80	75	69	1.18	81.24	18.90		1.07		0.88		16.7	
80 To 90	85	79	1.48	117.25	45.87		1.21		0.76		34.9	
90 To 100	95	67	1.82	122.16	61.62		1.36		0.67		41.0	
100 To 110	105	52	2.19	114.09	67.11		1.50		0.59		39.6	
110 To 120	115	42	2.60	109.04	71.09		1.64		0.53		37.6	
120 To 130	125	44	3.03	133.29	93.53		1.79		0.48		44.8	
130 To 140	135	33	3.49	115.26	85.45		1.93		0.44		37.3	
140 To 150	145	21	3.99	83.72	64.74		2.07		0.40		25.9	
150 To 160	155	13	4.51	58.63	46.88		2.21		0.37		17.3	
160 To 170	165	6	5.06	30.38	24.96		2.36		0.34		8.6	
170 To 180	175	5	5.65	28.23	23.71		2.50		0.32		7.6	
180 To 190	185	3	6.26	18.77	16.06		2.64		0.30		4.8	
190 To 200	195	2	6.90	13.79	11.99		2.79		0.28		3.4	
200 To 210	205	3	7.56	22.69	19.98	2.01	2.93	1.03	0.26	0.93	5.3	1.9
210 To 220	215	5	8.26	41.31	36.79	6.83	3.07	1.08	0.25	0.88	9.2	6.0

Stream FSP Data

22

ecosystem science + design

Stream FSP Data

Stream FSP Data

FSP/Q Rating CHI-Stream samples • n = 28

DISCHARGE TO FSP CONCENTRATION RATING CURVE

FSP(Q) = FSP concentration (y-axis) as a function of discharge (x-axis)

24