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LCM Modification after 2010 
• Lake Clarity Model (Sahoo, G. B., Schladow, S.G. and Reuter, J. E. 

(2010) Effect of Sediment and Nutrient Loading on Lake Tahoe (CA-NV) Optical 
Conditions and Restoration Opportunities Using a Newly Developed Lake Clarity 
Model. Water Resources Research, doi:10.1029/2009WR008447) 

  
 Lahontan and Nevada Division of Environmental Protection (NDEP), 2010. Lake 

Tahoe Total Maximum Daily Load Technical Report. 340 p. 
 • Introduction of Turbulent Diffusion Model to LCM 
(Sahoo, G. B., Schladow, S.G. and Reuter, J. E. (2012) Dynamics and 

Hydrologic Budget of a Large Oligotrophic Lake to Hydro-meteorological 

Inputs using Predictive Model, under Revision for Journal of Hydrology  

• Updated stream particles using measured data 2002-2010 (D. 

Nover, 2011). 

• Fractal particle aggregation model (D. Jassby 2006 and Sahoo 

after 2006). 

• Probability of aggregation 
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Particle Aggregation Theories 

1. Solid Particle Aggregation (SPA) Model (O’Melia, 1985) 

2. Fractal Particle Aggregation (FPA) Model (Jackson, 
1995, 2001) 



Previous Particle Model 

1. Solid Particle Aggregation (SPA) Model 

2. Constant value for probability of aggregation (α)            
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where cl, cm, and cn are number concentration of particles (# m-3) of size l, m, and 
n, respectively,    is a collision efficiency factor, reflecting the stability of the 
particles and the surface chemistry of the system, (l, m) is a collision frequency 
that depends on the inter-particle (particles of size l and m) contacts, wn (m s-1) is 
the settling velocity of particles of size n, and E(n, z) is an exchange coefficient, 
accounting for turbulent and molecular effects. The expression l + m  n under 
the summation denotes the condition that Ml + Mm = Mn, thus ensuring 
conservation of mass.   



New algorithms 
1. Fractal Particle Aggregation (FPA) Model (modified 
Jackson, 2001) 

2. Variable probability of particle aggregation (α) 

We  postulated that probability of aggregation is function of particle 
size distribution, particle concentration, and phytoplankton 

concentration.  



Modification contd. 
Chlorophyll a: Literature (Passow, 2011) suggests that Transparent 
Exopolymeric Particles (TEP) highly correlates with Chl a. TEP accounts 
for particles’ stickiness. 

Particle Concentration: The  probability of aggregation increases as 
the concentration of particles increases. 

Particle size distribution: as smaller particles concentration is 
higher to large particles α is inversely proportional to particle size (r)  

3. Both SPA and FPA conserve mass though the area available for collision 
is more for the case of FPA (Lee et al. 2000; Burd and Jackson, 2009). The 
new α was used for both SPA and FPA. 

The constant (Ca): Calibrated 

4. Stoke’s law estimates settling velocity for SPA. For FPA, settling velocity is 
based on fractal dimension. Both use the three different processes: Brownian 
diffusion, fluid shear, and differential settling for collision frequency.  



Results (Annual Average SD) 
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Results (Lake  
Particle 0.5-1μm) 
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Results (Lake  
Particle 1-2μm) 
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Results (Lake  
Particle 2-4μm) 
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Results (Lake  
Particle 4-8μm) 
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Results (Lake  
Particle 8-16μm) 
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Results using new α  

and Solid Particle Algorithm Model 
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Results using new α  
and Solid Particle Algorithm Model 

Seasonal trend 
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Summary 

• Long term measured lake and stream particle data helps to estimate the 
trend and calibrate the model well  
 
• The new probability of aggregation term captures well the seasonal and 
interannual Secchi  depth variation compared to constant number. 
 
• Both FPA and SPA conserve mass though area available for collision is 
more for FPA case. So, smaller particles are aggregated at higher rate for 
the case of FPA. Because of that predicted Secchi depth using FPA is 
little higher to using SPA.  
 
• This is not the end of modification. Availability of new dataset will help 
to find the ground truths of many processes and will ask for modification. 
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