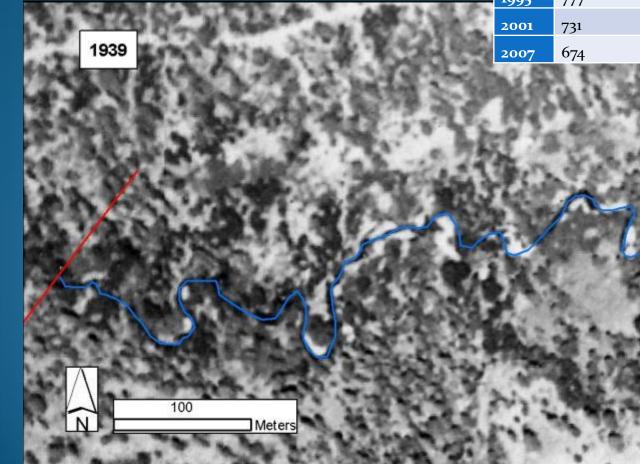

Blackwood Creek Stream and Floodplain Restoration; a Novel Approach in a Dynamic and Changing Environment

> Craig Oehrli, Hydrologist US Forest Service, Lake Tahoe Basin Management Unit 35 College Dr South Lake Tahoe, CA 96150 coehrli@fs.fed.us 530-543-2838

Stephanie Heller, Hydrologist – USDA Forest Service, LTMBU David Immeker, Hydrologist –USDA Forest Service, LTBMU Theresa Cody, Hydrologist-USDA Forest Service, LTBMU


Blackwood Creek Watershed • 29 km² • Elevation range 2,706 m 1,897 m at Lake Tahoe Blackwood Creek 11.5 km long

- Drains east into Lake Tahoe
- Volcanic geology
- Glaciated

1939 Reach 6 Aerial Photo

The key -- Riparian Resiliency in the face of Climate change

		Channel Length	
	Year	(m)	Sinuosity
	1939	985	1.80
	1969	894	1.63
	1986	835	1.53
	1995	777	1.42
í.	2001	731	1.34
ļ	2007	674	1.23

DFG 1934-38 "a wonderful stream for spawning in normal winters having good natural propagation, containing beautiful pools, continuous shade and shelter "(LWQCB, 2007). (Blackwood creek below project – 2011)

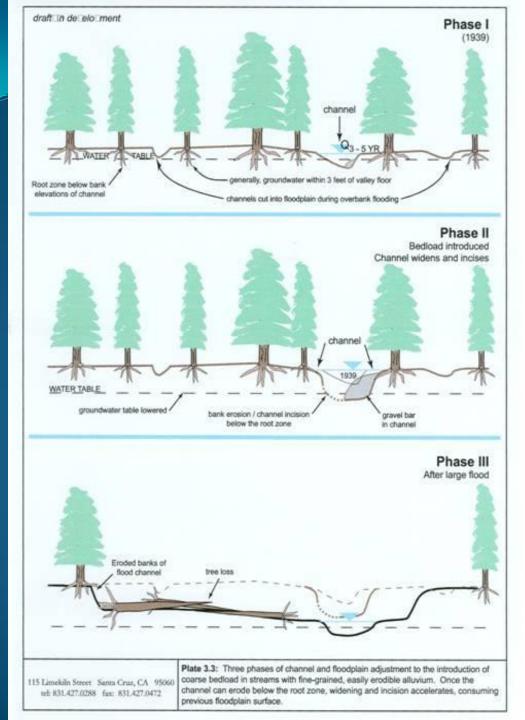
11/03/2011 13:05

Past Land Use

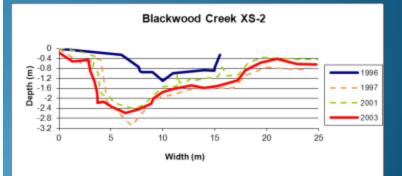
Sheep Grazing – 1880s-1960

Gravel Mining – 1960-1968

Comstock Logging – 1800s



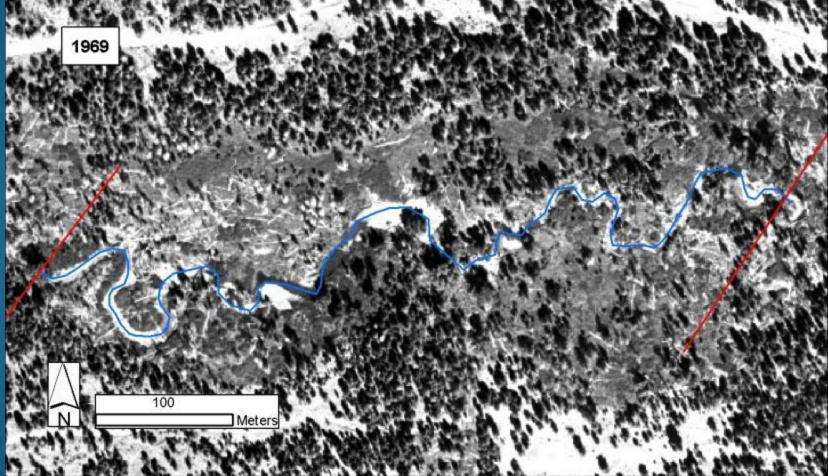
Mechanized Logging – 1950s & 1960s



Watershed Effects Complex Sequence of Events:

- Increase in supply of bedload to reach below gravel mine
- Aggradation in channel, decreasing channel capacity
- Cutoff channels form across meanders
- Channel straightens and becomes steeper
- Steeper channel Incises
- Incision increases bedload for downstream reaches
- Destabilization then propagates downstream

Cumulative land use effects result in loss of channel -floodplain resiliency...



Stream eats itself and it floodplain

1969 Reach 6 Aerial Photo

Floodr	olain	logging	and	influx	of	hed	load	
		00000	and		~_			

Year	Channel Length (m)	Sinuosity
1939	985	1.80
1969	894	1.63
1986	835	1.53
1995	777	1.42
2001	731	1.34
2007	674	1.23

2001 Reach 6 Aerial Photo

	Channel Length	
Year	(m)	Sinuosity
1939	985	1.80
1969	894	1.63
1986	835	1.53
1995	777	1.42
2001	731	1.34
2007	674	1.23

Blackwood Creek Reach 6 Aquatic Habitat Conditions 2001:

- 30 % stable banks (70 unstable) (2001)
- Pool / Riffle ratio = 0.54:1
- # of pools =8
- Median residual pool depth = 0.5m
- % riffle fines = 15% (2003)
- Stream Shade = 9%

2007 Reach 6 Aerial Photo

Destabilization continues...

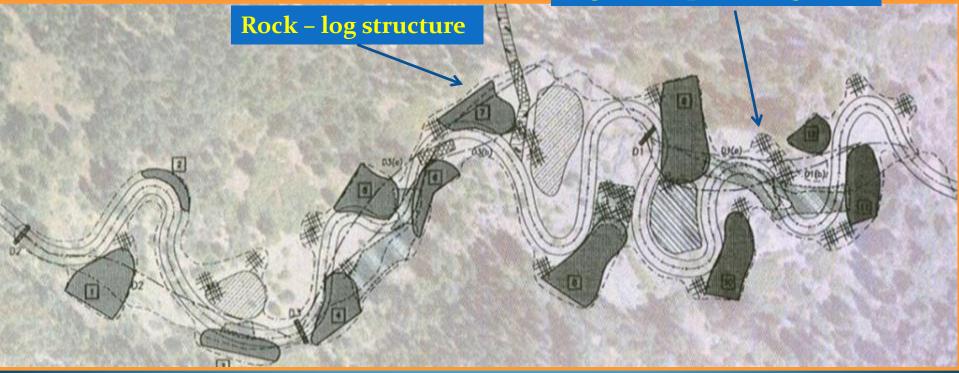
Yea	r Cha	annel Length (n	n) Sinuosity
1939	985		1.80
1969	894		1.63
1986	835		1.53
1995	777		1.42
2001	731		1.34
200	o7 674	4	1.23

["] highly unstable with little evidence of the floodplain recovering from previous erosion
" – Swanson 2003

Post 12/31/05 flood. Photo taken 7/2006

Blackwood Creek Reach 6 Restoration Project Design Goals: RESTORE RESILIENCY BY:

- Increase extent of flooding
- Decrease erosion by reducing shear stress of channel and floodplain
- Absorb surplus bedload and sediment moving through system, especially fines
- Allow the stream to rebuild its floodplain


Restoration Work in Reach 6

- Project constructed in 2008 and 2009
- Channel lengthened from 674 m to 1,090 m
- Design
 - New channel construction through Reach 6
 - Flow deflection structures of rock and logs
 - Incorporated floodplain depressions

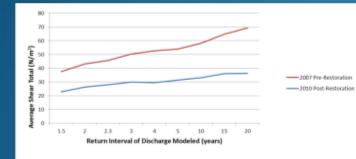
Blackwood Creek Reach 6- Design Layout

Log – floodplain roughness

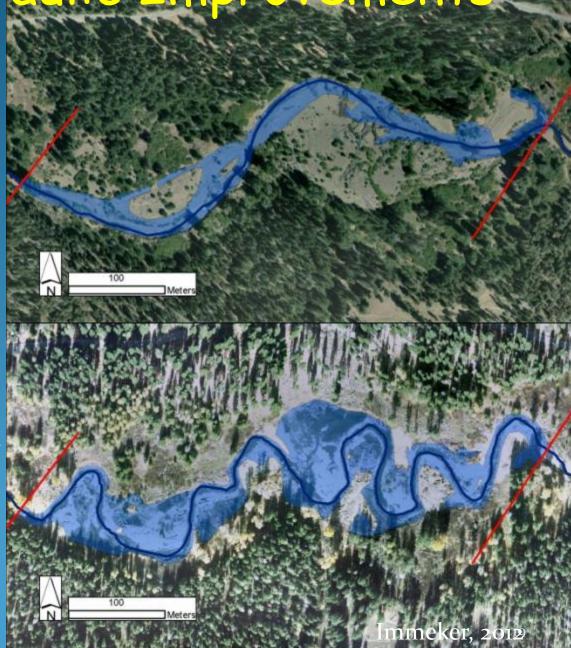
Reach 6 - Implementation

Reach 6 Restoration Post-Project

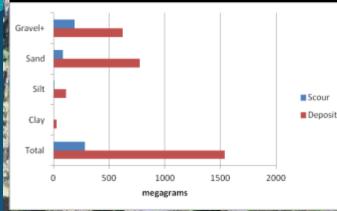
(Sinuosity of 1.99 –TMDL target is 1.6 or greater)


Phase IIIA - Flood Response Blackwood Creek takes over

2009 peak flow = 590 2010 peak flow = 440 2011 peak = 650-700 2012 peak =500 05-04-09


Results: Hydraulic Improvements

2 year return flow of 10.7 m³/s

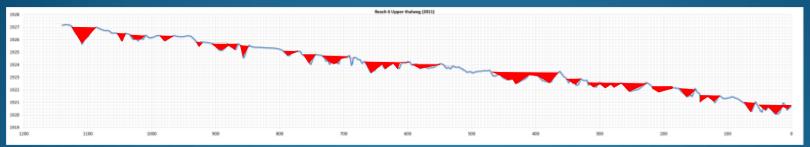

> **Pre-Restoration** 16,063 m²

Post-Restoration 32,327 m² 101% increase in flooded area extent 40-60% less total average shear stress

Results: Sediment Mapping/Sampling

Pre project = - 61 tons fine sediment per eroded per year Post project = + 142 tons of fine sediment retained

100 Meters


Immeker, 2012

Blackwood Creek Reach 6 Are We Achieving Restoration Project Design Goals?

- Increase extent of flooding YES
- Decrease erosion by reducing shear stress of channel and floodplain - YES
- Absorb surplus bedload and sediment moving through system, especially fines - YES
- Allow the stream to rebuild its floodplain YES
 Its early but we are encouraged...

Blackwood Creek Reach 6 Aquatic Habitat Conditions 2001:

30" Rainbow trout near structure 7 Photo by Jeff Marsolais LTBMU 2012

- 95% stable banks
- Pool riffle ratio = 1.9:1
- # pools = 25
- Median pool depth = 0.6m
 7% riffle fines
 % Shade = 5

Creation of beneficial hydraulics setting the stage for vegetation colonization ...shading...pools...cover...fish habitat...

10/13/2009

Riparian grasses colonizing Fresh flood sediments 2011..the start

Questions?