

May 24, 2012

What makes an effective RAM?

- Objective and well structured protocols
- Focused data collection
- Standardized
- Theory-tested with empirical data

Road RAM

Track relative FSP risk to downslope water quality from impervious road surfaces.

ROAD RAM TECHNICAL DOCUMENT FINA

220 DOLOGY (ROAD RAM) RAPID ASSESSMENT

nhc

- 1. There is an opportunity to reduce FSP concentrations on roads in the Tahoe Basin.
- 2. The relative condition of a road at any given time can be measured objectively.
- 3. Visual observations can serve as proxies to determine road condition and the FSP risk to downslope water quality.

Hypothesis #1: Opportunity to reduce FSP concentrations on roads

ecosystem science + design

5

ecosystem science + design

ecosystem science + design

9

Measured [FSP] 15 mg/L

In adjacent 1'x1' square, performed numerous visual observations to predict the measured FSP concentration.

Criteria:

- **Relatively consistent results** •
- Repeatable across users (more quantitative than ulletqualitative)
- Rapid lacksquare

Multivariate Analysis

Predictive capability of visual proxies to predict FSP concentration measured on 1 ft² by portable sampler

Predictor Variable	F	P-value
Dry Mass	277.34	<0.001
Degree of Fines	25.79	<0.001

These 2 factors explain 76.4% of the variance measured.

Road RAM Scores

FSP Concentration (mg/L) range	Road RAM Score	Condition	
1,592 – 680	0 – 1.0 Poor		
679 – 291	>1.0 - ≤ 2.0	Degraded	
290 – 124	> 2.0 - ≤ 3.0	Fair	
123 – 53	> 3.0 - ≤ 4.0	Acceptable	
52 – 23	> 4.0 - 5.0	Desired	

RAM Score 5.0 Predicted [FSP] = 23 mg/L

Track relative FSP risk to downslope water quality from impervious road surfaces.

Thank You

Road RAM funders

Supporting Research funders

2NDNATURE, NHC, and EI (2010)

2NDNATURE and NHC (2010, 2012)

Technical Advisory Committee

Scott Cecchi (CTC) Jason Kuchnicki (NDEP) Nova Lance-Seghi (Placer County) Robert Larsen (LRWQCB)

Dick Minto (Washoe County) John Reuter (UC Davis) Leslie Waters (Caltrans) Russ Wigart (El Dorado County)

ADDITIONAL SLIDES

Comparison of RAM score differences vs FSP concentration % differences

RAM Score	FSP Concentration (mg/L)	Absolute FSP Difference	Average FSP Difference	% Difference
0.9	741	60.4		
1.0	680		57.9	9%
1.1	625	55.4		
3.9	58	4.7		
4.0	53		4.5	9%
4.1	49	4.3		

2NDNATURE Field Precision Testing

METRIC	DIFFERENCE		
Number	54		
Average	0.3		
Maximum	1.0 (n=1)		
Minimum	0.0 (n=9)		
Score Differences > 0.5	n=4		

WY09-WY11 all road samples 34 sites across jurisdictions and road types

n = 279

No roads where abrasives are not applied

Is Road RAM score sensitive to road maintenance practices? **Jurisdictional** Variation winter

STEP 1: Define area of interestSTEP 2: Create Inventory (GIS)STEP 3: CLASSIFY Roads

STEP 4: Field ObservationsSTEP 5: Obtain RAM ScoresSTEP 6: Analyze Results

MAKE DECISIONS

