

Overview

- Forest Service Policy
- Expected climate change impacts
- How to prepare for climate change
- Project Examples

USDA Forest Service National Ecological Restoration Guidance

FSM 2000 - National Forest Resource Management Chapter 2020 - Ecological Restoration and Resilience

2020.3.2 – "Establish ecological restoration goals and objectives in strategic plans to maintain the adaptive capacity of ecosystems – recognizing uncertainty related to climate change."

USDA Forest Service National Ecological Restoration Guidance

National Roadmap for responding to Climate Change (FS-957b, February 2011)

USDA Forest Service Region 5 Ecological Restoration Leadership Intent Summary — R5-MR-048, March 2011

• Goal: "Retain and restore ecological resilience of the National Forest lands to achieve sustainable ecosystems....especially under changing and uncertain future environmental conditions such as those driven by climate change" R5-MR-048, March 2011

USDA Forest Service Region 5 Ecological Restoration Leadership Intent Summary — R5-MR-048, March 2011

Restore at least 50% accessible, degraded forest meadows to improve their habitat function and ability to hold water longer into the summer and deliver clean water when most needed....within 15-20 years

Ecosystem Services and Community Economic Benefits Enhanced

- > Delivery of clean water and improved flow regime that benefits people, fish and wildlife
- > Fish, wildlife and plant habitat for common and rare species
- Maintenance of biodiversity
- Forest resilience in the face of climate change and changing disturbance processes

Lake Tahoe Basin Management Unit Ecological Restoration Program

Mission Statement:

- Restore ecosystems to healthy, diverse, and productive conditions that meet the needs of present and future generations.
- Program objectives:
 - Restore natural processes that sustain healthy ecosystem function.
 - Coordinate with other LTBMU programs to facilitate an interdisciplinary approach to ecosystem restoration that meets the goals of the Land and Resource Management Plan.
 - Promote holistic ecosystem management through collaboration with public and private organizations, adjacent landowners, and the public.
 - Develop internal and external outreach, environmental education, and information technology transfer

What are the Anticipated Effects of Climate Change in Tahoe?

What does this mean for planning restoration activities?

- Increased percent rain, decreased percent snow, earlier snowmelt
 - Earlier and increased peak flows
 - Earlier onset of base flows and reduced base flows
 - Greater potential for flood flows
- Warmer stream temperatures
 - Impaired conditions for aquatic wildlife
 - Increased vulnerability to invasive species
 - Greater algal growth
- Drier site conditions
 - Increased likelihood of wildfire
 - Drier vegetation outcompetes wetter species
 - Increased frequency of drought

How to prepare for these effects in restoration projects?

Manage for desired future processes rather than desired future condition

- 1. Increase **Resistance** to change
- 2. Promote **Resilience** to change
- 3. Enable Ecosystems to **Respond** to change
- 4. Realign condition to current and future dynamics
- 5. **Reduce** greenhouse gases and **Reduce** non-renewable energy use

(http://www.fs.fed.us/ccrc/)

Increase Resistance to Change

"Homeland Security" approach

Most appropriate for: •Endangered/Threated species •Extreme fire risk

- Invasive species

Promote Resilience to Change

Healthy ecosystems are more resilient to change

- Important to take preventative steps to "heal" impaired ecosystem
- Improve the capacity to return to desired prior conditions after climate-induced disturbance.

Enable Ecosystems to Respond to Change

Anticipate and plan for risk

What are the risks of climate change?

- Increased percent rain, decreased percent snow, earlier snowmelt
- Drier site conditions
- Warmer stream temperatures
- Experiment creatively and learn from experiments
- "Bet-hedging practices"
- Increase diversity
- Heterogeneous ecosystems better able to withstand change
- Promote connected landscapes
- Allows species to move in response to change

Realign condition to current and future dynamics

Design projects for current conditions, not pre-European settlement.

Use historic record to inform future coditions.

Project Examples

Cookhouse Meadow on Big Meadow Creek

Cookhouse Meadow on Big Meadow Creek Restoration Plan Overview

Cookhouse Meadow on Big Meadow Creek Implementation 2005-2006

Block off old channel & put flow in new channel

Partial backfill of old channel

Cookhouse Meadow on Big Meadow Creek July 2011

Upper Truckee Reach 5 Restoration Implementation 2013-2016

Upper Truckee Reach 5 Restoration Proposed Alignment Overview

Existing Gravity Sewer Line

Cross-Section Location

Remember the 5 R's

- 1. Resistance
- 2. Resilience
- 3. Response
- 4. Realign
- 5. Reduce

For more information visit the Forest Service Climate Change Resource Center

http://www.fs.fed.us/ccrc/