

Monitoring Grass Lake Research Natural Area with Bryophyte Cover Correlated with Climatic Change

Shana Gross, USFS Wes Christensen, UC Davis

Peatlands

- Cover 3% of the Earth's surface¹
 - Make up 0.1% of the mountain landscape
- Wetlands with thick organic soil¹
 - Perennially saturated soils
 - Low oxygen subsurface conditions
- Provide island habitat diverse flora and fauna
- Help regulate stream flow and temperatures
 - Peat is a thermal insulator
 - Acts as a sponge
- Sierra Nevada peatlands are thought to be sustained groundwater (fens²)
 - High evapotranspiration
 - Low summer precipitation

Sierra Nevada Fens

- Often the only source perennial moisture
- Support ecosystems with high biodiversity
- Sensitive plant communities
- CA National Forests are directed to maintain, restore, and/or enhance fens

Grass Lake

Largest peatland in Sierra Nevada (93 ha)
South Lake Tahoe, Luther Pass, CA
Designated as a Research Natural Area in 1991
Tahoe Regional

Planning Agency uncommon plant community

Fens are climatically sensitive ecosystems¹

- Climate change may increase impacts to fens³
 - Increase evapotranspiration
 - Decrease water table
 - Decrease peat volume due to increased decomposition
 - Change in the plant community
- Climate change predictions for Tahoe Basin include²:
 - Increased air temperature
 - Shift from a snow to a rain dominated regime
 - Earlier snowmelt
 - Increased interannual variability
- We hypothesize that hydrologic changes are one of the largest threats to Grass Lake (and peatlands in general)

Bryophytes

- Form the foundation for peatland plant communities²
- More sensitive to climatic changes than vascular plants²
- Good ecological indicator species:
 - Monitored with simple¹
 repeatable field methods
 - Responds relatively quickly to changes¹
 - Has a link to societal values¹

Meesia triquetra

- CA Forest Service FS
 Sensitive Species
- Uncommon due to limited distribution habitat¹

Sphagnum spp.

- GL largest Sphagnum "bog" in CA
- Indictor climate change²
- Intimately tied to hydrology³

¹Montagnes 1990; ²Gignac 2001; ³Andrus 1986

Field Methods

Geostatistics

- ArcMap 9.3 Geostatistical Analysist
- Ordinary krigging
 - Spherical model
 - Lag of 15 meters
- Visually fit semivariograms:
 - Nugget = variance at small distances
 - Sill = variance at large distances
 - Range = distance with constant variance
- Anisotropy major axis 110⁰
- One sector neighborhood 1:20 neighbors

Meesia triquetra 2010 semivariogram, minor axis 20⁰

Meesia triquetra 2010 semivariogram, major axis 110⁰

Cover Categories

- Sparse cover: 0-5%
 - Intermediate cover: 5-50%
- Dominant cover: 50-100%

Validation

Year	2010	2009	2004	2010	2009	2004
Correct Prediction	91%	91%	86%	87%	78%	84%
Over Predicting	6%	8%	6%	8%	12%	13%
Under Predicting	3%	1%	8%	5%	10%	3%

Meesia triquetra

Sphagnum spp.: Sphagnum inundatum, S. lescurii, and S. squarrosum

Climate Data

- Water Year
- Total Growing Days
 Echo Peak SNOTEL¹
 - $> 2^0 C^2$ ave daily temperature
- Growing days since peak spring flow
 - Echo Peak SNOTEL¹; USGS Meyers gauge³
 - >2⁰ C ave daily temperature post peak stream flow
- Total stream discharge after peak stream flow – USGS Meyers gauge³

¹<u>http://www.wcc.nrcs.usda.gov/snow/snotel-precip-data.html</u>; ²Gignac et al. 1991; ³<u>http://waterdata.usgs.gov/nwis/rt</u>

Bryophyte Area and Climate

1 ha = 2.47 acres

Summary

- Since 2004
 - Rapid contraction and expansions of bryophyte cover
 - Decrease of Meesia triquetra
 - Increase of Sphagnum spp.
 - Increase total spring discharge (magnitude varies year)
 - Number Growing Days vary by year
 - Look to other potential climate variables explain trend
- Continue Monitoring

Acknowledgements

- Field Personnel
 - Blake Engelhardt
 - Alison Stanton
 - Beth Brenneman
 - Cristina McKernan
 - Emily Millar
 - Erik Frenzel
 - Eva Olin
 - Jody Fraser
 - Justina Fedorchuk
 - Katie Heard
 - Kim Gorman
 - Stu Osbrack

Funding

Southern Nevada Public
 Lands Management Act