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Historic Climate Trends in the Tahoe Basin

> Upward trend In air temp.; Tmin > Tmax

> Shift from snowfall to rainfall regime

> Increasing intensity of rainfall

> Shift In timing of snowmelt peak ~ 0.4 days/yr

> Warming trends higher than surrounding
regions

> Upward trend in ave. lake temp. ~0.01.3 °C/yr
> Ihermal stability of the lake Is increasing



Information Flow for Future Projections

Parallel Climate Model (PCM)
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GFDL A2 Percent Annual Precipitation as Snow
Tahoe Basin Average
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Showpack
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CLIMATE CHANGE

Stationarity Is Dead:
Whither Water Management?

P. C. D. Milly,"* Julio Betancourt,? Malin Falkenmark,? Robert M. Hirsch,” Zbigniew W.
Kundzewicz,® Dennis P. Lettenmaier, Ronald J. Stouffer’

throughout the developed world have

been designed and operated under the
assumption of stationarity. Stationarity—the
idea that natural systems fluctuate within an
unchanging envelope of variability—is a
foundational concept that permeates training
and practice in water-resource engineering. It
implies that any variable (e.g., annual stream-
flow or annual flood peak) has a time-invari-
ant (or 1-year—periodic) probability density
function (pdf), whose properties can be esti-
mated from the instrument record. Under sta-
tionarity, pdf estimation errors are acknowl-
edged, but have been assumed to be reducible
by additional observations, more efficient
estimators, or regional or palechydrologic
data. The pdfs, in tarn, are used to evaluate
and manage risks to water supplies, water-
works, and floodplains; annual global invest-
ment in water infrastructure exceeds
U.S.$500 billion (Z).

S ystems for management of water

An uncertain future challenges water planners.

In view of the magnitude and ubiquity of

the hydroclimatic change apparently now

Climate change undermines a basic assumpticn
that histerically has facilitated management of
water supplies, demands, and risks.

that has emerged from climate models (see
figure, p. 574).

Why now? That anthropogenic climate
change affects the water cycle (9) and water
supply (10) is not a new finding. Nevertheless,
sensible objections to discarding stationarity
have beenraised. For a time, hydroclimate had
not demonstrably exited the envelope of natu-
ral variability and/or the effective range of
optimally operated infrastructure (11, 12).
Accounting for the substantial uncertainties
of climatic parameters estimated from short
records (13) effectively hedged against small
climate changes. Additionally, climate projec-
tions were not considered credible (12, 14).

Recent developments have led us to the
opinion that the time has come to move
beyond the wait-and-see approach. Pro-
jections of runoff changes are bolstered by the
recently demonstrated retrodictive skill of cli-
mate models. The global pattern of observed
annual streamflow trends is unlikely to have




GFDL B1 Estimated Percent Change in Flood Magnitude
from 1972-2008 Gage Data, Upper Truckee River
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Ward Creek, December 31, 2005




Impacts of the 1997 flood, Lower Ward Creek, Oct. 2005
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Shift of Snowmelt (ann. hydrograph centroid)
toward earlier dates, Upper Truckee River
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Spatial variation of
snowpack depth for
GFDL A2 scenario
(2067-2099).

Legend
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Spatial variation of
evapotranspiration
(ET) for GFDL A2
(2067-2099).

Legend
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The Palmer Drought Severity Index

Rain + Snowmelt
From LSPC

1 Loss to

Surface Soil Storage | mmmmml)> | Atmosphere;
1 inch Max. Et from

Thornthwaite

B/C Horizon Solil Storage




Tahoe City B1
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Modeled Annual Minimum Weekly Palmer Drought Severity Index
at 2 stations for 2 scenarios in the Tahoe basin
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Annual Maximum 1-hr Precipitation, Tahoe City
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Assisted Colonization and Rapid

Climate Change

0. Hoegh-Guldberg,'* L. Hughes,? S. McIntyre,® D. B. Lindenmayer, C. Parmesan,’

H. P. Possingham,? C. D. Thomas’

apid climatic change has already
K:used changes to the distributions of
any plants and animals, leading to
severe range contractions and the extinction of
some species (/, 2). The geographic ranges of
many species are moving toward the poles or
to higher altitudes in response to shifts in the
habitats to which these species have adapted
over relatively longer periods {(/—4). It already
appears that some species are unable to dis-
perse or adapt fast enough to keep up with the
high rates of climate change (3, 6). These
organisms face increased extinction risk, and,
as a result, whole ecosystems, such as cloud
forests and coral reefs, may cease to function
in their current form {7-9).

Current conservation practices may not be
enough to avert species losses in the face of
mid- to upper-level climate projections (>3°C)
(10), because the extensive clearing and
destruction of natural habitats by humans dis-
rupts processes that underpin species dispersal
and establishment. Therefore, resource man-
agers and policy-makers must contemplate
moving species to sites where they do not cur-
rently occur or have not been known to occur
in recent history. This strategy flies in the face

2008. Science 321:345

ately moving species are regarded with suspi-
cion. Our contrary view is that an increased
understanding of the habitat requirements and
distributions of some species allows us to
identify low-risk situations where the benefits
of such “assisted colonization’” can be real-
ized and adverse outcomes minimized.
Previous discussions of conservation
responses to climate change have considered
assisted colonization as an option {7/, 12), but
have stopped short of providing a risk assess-
ment and management framework for how to
proceed. Such frameworks could assist in
identitying circumstances that require moder-
ate action, such as enhancement of conven-
tional conservation measures, or those that
require more extreme action, such as assisted
colonization. These frameworks need to be
robust to a range of uncertain futures (/3).

Migration

V|

Moving species outside their historic ranges
may mitigate loss of biodiversity in the face of
global climate change.

Uncertainties arise in climate projections and
in how species and ecosystems will respond.
Hence, calculation of the lower and upper
bounds for the probability and cost of a range
of possible outcomes may be the best strategy.

With this in mind, we developed a deci-
sion framework that can be used to outline
potential actions under a suite of possible
future climate scenarios (see figure, below).
Determining whether a species faces signifi-
cant risk of decline or extinction under cli-
mate change requires an in-depth knowledge
of the underlying species’ biology as well
as the biological, physical, and chemical
changes occurring within its environment.
The risk of extinction for many widespread,
generalist species found across a range of
habitats may be low. In this case, the option of
moving such species outside their present

pbaded from www.sciencemag.org on July 18, 2008




Photo from LTSLT

Tahoe yellow cress (Rorippa subumbellata)
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Changes In the Watershead

Earlier Onset of Spring

|

Stressed Vegetation

e

Larger, More Frequent Fire < | More Rain, Less Snow
More frequent floods @
@ Lower summer streamflow

More Soil and Channel Erosion



Pinus monticola






Alpine/Subalpine Forest
Conifer Forest

Mixed Evergreen Forest
Mixed Evergreen Woodland
Grassland

Shrubland

Arid Lands

GFDL-AZ2

Distribution of the vegetation classes simulated for the historical (1961-1990) and

GFDL-AZ2 future period (2070-2099). From Lenihan et al. 2008. Climatic Change 87:
S215-5230




Alpine/Subalpine Forest

Conifer Forest

Mixed Evergreen Forest

Mixed Evergreen Woodland

Grassland

Shrubland

Desert

I | 1 | | 1 I I I I

-100-80 -60 -40 -20 0 20 40 60 80 100120
Change in Total Cover (%)

Changes in Calif. Vegetation Distribution 2070-2099, relative to 1961-1990.
From Lenihan et al. 2008. Climatic Change 87: S215-S230
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Is This the Future Tahoe Forest
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