Hydrogeology of Grass Lake Luther Pass, California

SOUTHERN NEVADA PUBLIC LAND MANAGEMENT ACT www.blm.gov/snplma

Overview

- - Site description
 - Geology
 - Stream flows
 - Hydraulic gradients
 - Specific conductivity
 - Modeling
 - Parameter estimations and measurements
 - Geomorphic basis for geologic unit thickness
 - Watershed model

Physically Based Modeling

- Explore the potential response of a groundwater sustained peatland (Grass Lake) to predicted changes in climate
 - Earlier snow melt
 - Less snow, more rain on snow
- Small watershed scale (~10 km²)
 - Local scale hydrology (~100 m²)
- Physical parameters governing groundwater flow and storage
 - Hydraulic conductivity
 - Storage coefficients
 - Thicknesses of geologic units
- Protected "Research Natural Area"
 - NO tracer tests
 - NO pumping
 - Minimal disturbance
 - Natural T signal

Grass Lake Geology

Grass Lake

Streams

Stream Flow

(y-axes different scale)

-2010

2011

2010

-2011

Groundwater

- 30 piezometers near shore
- Screened in sediment below peat
- Gradient = (GW-SW)/(DEPTH)
 - Limited to presence of SW
- Often artesian flow (upward)

Water

Vertical Hydraulic Gradients (+ is upward flow)

Gradient requires surf water 0.4 0.4 2011 (N) 2010 (N) (GW-SW)/(DEPTH) Hydraulic Gradient (m/m) Hydraulic Gradient (m/m) 0.3 0.3 High gradient over short 0.2 0.2 vertical distances 0.1 0.1 Gradient drives flow from 0.0 0.0 hillslope/confined aquifer through the peat -0.1 -0.1 4/20 6/19 8/18 10/17 4/20 6/19 8/18 10/17 Gradient S > Gradient N Date 2010 Date 2011 N = road<u>→</u>N4 -----N3 — N5 -N1 -N2 -----N7 N9 N10 -------------------------------N11 -N12 N13 N15 S = glacial deposits0.4 0.4 Geology 2010 (S) 2011 (S) unit wate Hydraulic Gradient (m/m) Hydraulic Gradient (m/m) 0.3 0.3 Tioga glacia Tahoe glacia 0.2 0.2 volcanic bedrocl N11 plutonic bedrock N15 Piezomete N1 0.1 0.1 S1 S3 0.0 0.0 U1 -0.1 -0.1 4/20 6/19 8/18 10/17 4/20 6/19 8/18 10/17 Date Date 2010 •S1 **S**3 **S**4 ~~S5 — S6 **---**S7 **-**S8 -S12 **S**9 S10 **—**S11

Confined Head Contours

Fall 2010 Piezometric Head

Spring 2011 Piezometric Head

- "Shadow" effect from bedrock
- Stream influence
- Larger change along N than S
 - 0.1 to 0.9m change in N
 - 0.1 to 0.3m change in S

Specific Conductivity

- North GW >> (South GW ~ Streams)
- (South GW > South SW) ~ Streams
- Dilution of GW and SW from snowmelt

SC: Streams 2011

SC: Piezometers 2011

Parameter Estimation

- Vertical hydraulic gradients sensitive to K_{sat}(peat)

 Can be determined using vertical T profiles and head

 Recession of Outlet flow sensitive to peat water retention
 - Recession of stream flows sensitive to hillslope transmissivity and storage (K_{sat} and thickness)

Vertical Hydraulic Conductivity from Temperature

Vertical GW flow distorts propagation of surface heat changes into subsurface

- TidBit temperature loggers
- various depths in piez

shallow outside in peat

Harsh Winter Conditions Deep Snow Metal Piezometers

Temperature Observations

- Maximum T is delayed in both piez and peat relative to air T (~7-10 hours)
- Minimum T in piez is delayed relative to minimum air T (~1 hour)
- Minimum T in peat is delayed relative to air T and piez T (~5 hours)
- Obvious difference between T signal in piezometer and in peat

Effects of Metal on Temperature

- Thermal Conductivity of metal 16 W m⁻¹ K⁻¹
- Thermal conductivity of peat < 0.5 W m⁻¹ K⁻¹
- At ~10 cm T_{inside} ~ 4°C higher than $T_{outside}$
- Max T_{inside} earlier than Max T_{outside}
- Significantly affects parameter estimates

Peat Water Retention

- Hanging water column
- Spec suction head to 1.5m
- Saturated water content ~80%
- Water content at 0.5m ~60%
- PC4 was the most decomposed sample

Shallow Subsurface Thickness

- Down cutting of streams in upper WS in response to glaciers
 - 80+m thick weathered bedrock (grus)
- Projection of glaciated bedrock surface
 - 5 to 40m thick glacial till
- Electrical Resistivity Imaging (Doug Clark, unpub.)
 - 80m thick valley fill (peat surface to bedrock)
- Probes and ERI
 - 0 to 10m thick peat
- Lidar Data was
 INDESPENSIBLE
 - Provided by

Tahoe Regional Planning Agency http://dx.doi.org/10.5069/G9PN93H2

Watershed Model

Acknowledgements

- Ida Fischer
- Sherry Devenberg
- Caleb Kesling
- LTBMU
 - David Immeker
 - Sarah Howell
 - Shana Gross
- Fogg Lab
 - Nick Newcomb
 - Nick Engdahl
 - Dylan Boyle
 - Ehsan Rasa
 - Charlie Paradis

