Catchment-scale Hydrologic and Water Quality Modeling Using SWMM to Validate Lake Tahoe TMDL Implementation Pollutant Load Estimates

> Will Anderson, Tahoe RCD May 24, 2012

Measured data courtesy of Russell Wigart, El Dorado Co. DOT, Tahoe Engineering Division

Introduction

- Watershed modeling plays a central role in water quality assessment & TMDL
- Model provides concise estimates of pollutant loads
 - -e.g., annual average Fine Sediment Particle Load

Introduction

- Need for closer look into model results vs. measured data
- Modeling and monitoring data require analysis
 - Grab sample reveals snapshot in time
 - Instant concentration vs. annual load
 - Need for long-term flow data and meteorology

TMDL Context

- <u>Mandate</u>: % reduction in fine sediment runoff
- Jurisdiction responsibilities:
 - New stormwater general permit
 - Delineate stormwater catchments (2009)
 - Estimate pollutant loads and report to Water Board
 - Earn "credits" for reducing loads
- <u>Pollutant Load Reduction Model (PLRM)</u> is basis for estimating pollutant loads
 - Developed by nhc for Lahontan RWQCB

PLRM: How does it work?

PLRM: How does it work?

LAND USE

Secondary

Roads

19%

Vegetated 3

22%

SFR

Impervious

17%

PLRM Refinement Process

1) Set up catchment in PLRM interface

2) Run SWMM5 for event basis

Calibrate / reduce errors

R

M

Build 5.0.022

3) Run revised parameters in PLRM for catchment load crediting

Catchment in Montgomery Estates

Catchment characterization

- 18.5 acres
- 11.3 % slope
- Residential/ secondary roads
- Fast-draining soils
- Curb and gutter:
 - All stable shoulders
 - Moderate to high risk due to slope
 - Conveys stormwater flows directly to Trout Creek

Marshall Trail: rolled curb and cut slope

Catchment Land Use Distribution:

Single Family Residential & Secondary Roads

PLRM Land Use Configuration

PLRM Land Use Configuration

BMP Driveway Survey

- 70 total parcels
- 5.7 % BMP certificate/working
- 20 % need maintenance (i.e. source control only)

PLRM Drainage Conditions

Single Family Residential (10.9 acres			Imperv	
	% of Area	Area (ac)	Area (ac)	DCIA (%)
Area Draining To Infiltration Facilities	5.7	0.62	0.18	100
Remaining Area Draining To Outlet	94.3	10.28	3.02	50

Each Land Use Becomes Subcatchment in SWMM5

Each Land Use Becomes Subcatchment in SWMM5

Russ Wigart, El Dorado Co. DOT-TED installing field equipment— Sigma flow-weighted auto sampler

June 28, 2011 Storm Event

- El Dorado Co. DOT-TED fieldwork by Russ Wigart
- Flow gage and water quality sampler in storm drain manhole, 5-minute rainfall
- Forecast: ~1 inch total precipitation
 - Known runoff yield →interval to set Sigma
- <u>Recorded:</u> 0.93 inch rain, 9905 cu. ft. runoff over 13 hours

June 28, 2011 Storm Event

SWMM5 runoff vs. measured

Flow-duration curve

"OK, so now what?"

- Modeled flow shows good response to precipitation
- Peak flows and timing look good
- <u>Total volume</u> predicted by PLRM 26% higher than measured
- Parameter adjustment?
 - Measured flows do not respond to 0.01 inch /5min events (seems to be loss from surface or pipes)
 - Initial peak flow over-estimated (initial storage)

SWMM5 runoff vs. measured (adjusted parameters)

Flow-duration curve (adjusted parameters)

Water Quality Results: Measured TSS, n=19 flow-weighted EMC TSS = 202 mg/L

SWMM5 Water Quality – TSS

mean = 207 mg/L

Pollution reduction strategies

- Pollutant source control treatments
 - Parcel-scale BMPs
 - Road maintenance and sweeping
 - Site-specific conditions, e.g. eroding cut slopes
- Catchment-scale treatments
 - Dry basin, infiltration basin, wet basin, storm filters, etc.
- El Dorado Co. DOT-TED example
 - Infiltration basin design in catchment
 - How big?? 33% of runoff volume typical

PLRM Infiltration Basin Results:

Size alternatives—Based on flow yield from 1-inch storm

PLRM Infiltration Basin Results:

Size alternatives—Based on flow yield from 1-inch storm

PLRM Infiltration Basin Results:

Size alternatives—Based on flow yield from 1-inch storm

PLRM Refinement Process

1) Set up catchment in PLRM interface

2) Run SWMM5 for event basis

Calibrate / reduce errors

R

EPA SWM Version 5.0 Build 5.0.022

3) Run revised parameters in PLRM for catchment load crediting

