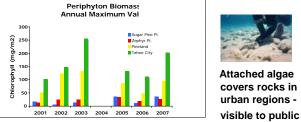


Science is Helping to Restore Lake Clarity Developing an Integrated Water Quality Management System

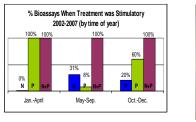
John Reuter, Geoff Schladow, Scott Hackley, Monika Winder, Jeremy Sukolsky, Chad Praul

State of the Lake Warming of Lake Tahoe



Volume Averaged Whole-Lake Temperatur

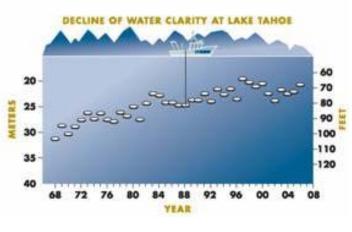
increased Tahoe's


- temperature
- · Increased water column stability selects for smaller sized diatoms, affecting biodiversity and food webs
- Resistance to deep mixing will affect water quality

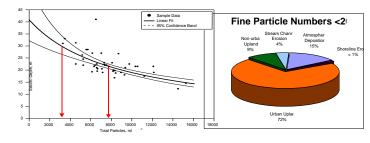
Nearshore Water Quality Attached Algae

Attached algae covers rocks in urban regions -

Phytoplankton at Base of Food Web



- Phytoplankton growth increasing Bioassays show N+P combined stimulate growth
- Depth of maximum biomass shallows
- New techniques indicate that very small phytoplankton play a role in productivity, biodiversity and food webs


Depth of Maximum Algal Bio

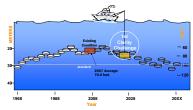
New Analysis Shows Slowdown in Lake Tahoe Clarity Loss

- Since 2001 better clarity than predicted by historic long-term trend
- New analysis uses a Generalized Additive Model - more sensitive to detecting long-term change and reflective of current conditions
- Time-series analysis suggests slowdown not entirely due to lower precipitation and runoff
- New curve does not predict future conditions

Fine Particles and Lake Clarity

Modeling shows clarity can be restored if loading targets are met

Large fraction of urban sources will require reduction


Tahoe Science Consortium

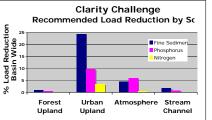
Addressing Science Needs in the Lake Tahoe Basin


Lake Tahoe TMDL

Clarity Challenge

Clarity Challenge - interim water guality milestone of 77-80 feet of clarity. Represents improvement over current conditions. Science suggests a 32% in fine sediment loading, 17% reduction in phosphorus loading and a 4 % reduction in nitrogen loading is needed to meet this goal.

Load Reduction Opportunities



Pollutant Reduction Opportunity study quantified options. Greatest opportunity came from control and treatment of urban stormwater.

Pollutant Reduction Targets

(% of total basin loads)		
Target	77-80 ft.	97 ft.
Secchi Depth	"Challenge"	TMDL
	15 years	>20 years
Fine Particles	32%	65%
Phosphorus	14%	35%
Nitrogen	4%	10%

Strategy for Meeting WQ Goals

