Boundary Conditions

Monitoring Network

Trout Creek Discharge Record

Spring 2003 Flooding

Model Calibration Incipient flooding at correct discharge Outlet water velocities Evapotranspiration + infiltration Outlet water temperatures

Fine Sediment Removal Mechanisms

Settling
 Removal from impaction on submerged vegetation

Fine Sediment Removal Mechanisms

- 1. Settling
- 2. Removal from impaction on submerged vegetation
- 3. Stranding from infiltration + evapo-transpiration

Fine Sediment Removal Mechanisms

- 1. Settling
- 2. Removal from impaction on submerged vegetation
- 3. Stranding from infiltration + evapo-transpiration
- 4. Flocculation

Boundary Conditions

Modeling Cases

> 1. Base case Vegetation changes 2. All grass floodplain 3. All willows floodplain > Topographic changes 4. Check dam downstream of confluence 5. Check dam upstream of confluence 6. Cross-floodplain berm downstream of confluence

Results

Review: Monitoring Data Needs

Help from the weather

- Measurements of fine sediment discarges into floodplain and sediment out (turbidity sensors)
- Future studies will take advantage of lidar data

Acknowledgements

 Funding – CTC, SNPLMA Round 8
 Field site introduction – Scott Carroll, Cyndie Walck, Virginia Mahacek