TAHOE CLIMATE SCIENCE 2014 SYMPOSIUM NOVEMBER 13, 2014

Rich Niswonger, USGS

HYDROLOGY MODEL FOR TAHOE

- Integrated surface and groundwater flow model (GSFLOW)
- Simulate water resources and nutrient transport from watersheds to lake
- Provide insights about how watersheds drain to lake, lake storage, and linkages to climate

GSFLOW—Coupled <u>G</u> round-Water and <u>S</u> urface-Water <u>Flow</u> Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)	L
Chapter 1 of Section D, Ground-Water/Surface-Water Book 6, Modeling Techniques	
Precidadon precidadon Unadurated Gravey range Unadurated Gravey range Ground water for Ground water for	
Techniques and Methods 6–D1	
U.S. Department of the Interior U.S. Geological Survey	
U.S. Department of the Interior U.S. Geological Survey	

Collaborators include Justin Huntington and others from DRI

HYDROLOGY MODEL FOR TAHOE (FLOODS)

Arkstorm simulation of streamflow

Model explicitly simulates streamflow in channels

HYDROLOGY MODEL FOR TAHOE (SNOWPACK)

Arkstorm simulations of snow depth

13 feet of snow melted during second phase of storm

SNOW-MELT NUTRIENT TRANSPORT MODEL

MODIS Terra Spatially Distributed Snow Covered Area (Melt WY2011)

Simulated Verses Measured SCA—Spatially Aggregated

Difficult to match early season storms

STREAM NUTRIENT LOADS AND NEAR-SHORE QUALITY

Influence of cold water and nutrient loads on near shore (Ward Creek)

SEASONALITY OF NITRATE LOADS IN STREAMS

Nutrients are flushed, often before peak flow

ANOTHER SOURCE OF NUTRIENTS GW SEEPAGE

Collaboration with Ramon Naranjo (USGS)

ANOTHER SOURCE OF NUTRIENTS GW SEEPAGE

Collaboration with Ramon Naranjo (USGS)

GROUNDWATER SIMULATIONS

Blue = groundwater recharge Red = groundwater discharge Gold = no exchange

Surface water and groundwater interactions

NEXT STEPS FOR MODELING

- Continue to study linkages between near-shore quality (e.g., periphyton) and watershed sources of nutrients
- Develop snowpack/nutrient transport model for GSFLOW
- Develop model as a tool to evaluate conceptual models, management options, and future climate impacts on near-shore lake quality

Thoughts?